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Abstract
We expand the set of initial states of a system and its environment that are known
to guarantee completely positive reduced dynamics for the system when the
combined state evolves unitarily. We characterize the correlations in the initial
state in terms of its quantum discord [1]. We prove that initial states that
have only classical correlations lead to completely positive reduced dynamics.
The induced maps can be not completely positive when quantum correlations
including, but not limited to, entanglement are present.

PACS numbers: 03.65.−w, 03.65.Yz, 03.67.Mn

1. Introduction

In the mathematical theory of open quantum systems [2] it is often assumed that the system
of interest and its environment are initially in a product state. This restrictive assumption
precludes the theory from describing a wide variety of experimental situations including that
in which an open system is simply observed for some interval of time without attempting to
initialize it in any particular state at the beginning of the observation period. If dynamical
maps [3] are used to describe the open evolution, then an initial product state would lead to
dynamics of the system described in terms of completely positive maps [4, 5]. There has been
significant experimental and theoretical interest in quantum correlations, entanglement and
coherence in the context of quantum information theory [6]. It is only recently that interest has
picked up in investigating how these properties, when present in the initial state of a system
and its environment, affects the open evolution of the system [7–14].

Imagine that the time evolution of a state of a system that is open to its environment
is observed and found to be completely positive. What does this say about the relationship
between the system and its environment at the start of the quantum process? From the observed
evolution is it possible to conclude that the two were initially in a product state? In this paper,
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we investigate the question of how to relax the initial product state assumption and still obtain
dynamics for the system that are described by completely positive transformations. We find
that the system and its environment can initially be in a more complicated state than a product
and certain restricted types of correlations between the two will not destroy the complete
positivity of the reduced system dynamics.

Consider a generic finite-dimensional bipartite state ρSE of a quantum system S and
its environment E . Unitary evolution of ρSE induces a transformation on the system that is
described by a trace-preserving Hermitian superoperator called a dynamical map B. The
dynamical map is defined by

η → B(η) ≡ TrE [UρSEU †] = η′, (1)

where η = TrEρSE is the initial state of S and η′ is its final state. By assumption, only the
state of the system can be directly observed. The dynamical map is linear; consequently,
none of the parameters that determine the state of the system appear in it. On the other hand,
parameters that determine the overall state ρSE but do not appear in η can appear in the map
and they will effectively be identified as parameters that describe the evolution and not the
state of the system of interest.

We use η to represent density matrices of the system S and τ to represent density matrices
of the environment. The action of the map can be written in terms of its eigenmatrices {ζ (α)}
and eigenvalues {λα},

B(η) =
∑

α

λαζ (α)ηζ (α)†. (2)

If the initial states of the system and its environment are product states, ρSE = η ⊗ τ , then the
eigenvalues of the dynamical map are all positive for any choice of unitary evolution [4, 5].
In this case we can define C(α) ≡ √

λαζ (α) to get

B(η) =
∑

α

C(α)ηC(α)†, (3)

with
∑

α C(α)†C(α) = 11. Any map that can be written in this form is completely positive
[15, 16].

Can the dynamical maps formalism still be used if the initial system and environment
state is not a product state? Yes, but correlations of the system with the environment mean
that a few extra considerations apply. For one, the dynamical map is usually not completely
positive and very often not even positive [7]. The not completely positive nature of the map
means that only a subset of the set of states of the system gets mapped to other states by the
dynamical maps. The dynamical map is well defined if it is positive on a large enough set of
states such that it can be extended by linearity to all states of the system. The set of states
that get mapped to other states by the map defined for a particular time is called the positivity
domain corresponding to that time. There is a set of states that get mapped to other states by
the map defined at all times. It can be shown that this set of states is precisely those that are
compatible with the correlations that are assumed to be present in the initial state of the system
and the environment [9, 10]. The realization that all the states that get mapped to matrices
that do not represent states at some time or the other by the map are precisely those states
that were excluded by the correlations that were assumed to be present in the initial combined
state removes the problems that were previously thought to be present in giving a physical
interpretation to the action of not completely positive maps. We note here that positivity of
the map should not be confused with the property of complete positivity. Complete positivity
is a property of the form of the map (it has positive eigenvalues), while positivity is a property
of the action of the map (it maps density matrices to density matrices).
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Do all correlations in the initial state of the system and the environment lead to not
completely positive maps or are there certain kinds of correlations that preserve the complete
positivity of the reduced evolution of states of the system? In this paper, we identify a general
class of initial states that under any unitary transformation induce completely positive reduced
dynamics for the system. Simply separable states are of a tensor product form, such as
ρSE = η ⊗ τ , are a subset of this general class of states. To characterize this class we use the
notion of quantum discord introduced by Ollivier and Zurek [1].

2. Example of a not completely positive map coming from an initial state with no
entanglement

Since we know that entanglement in ρSE typically leads to not completely positive dynamics
for S [12], we first look to see if separability of the initial state is sufficient to guarantee
complete positivity. We find that this is not so and illustrate this with an example that shows
how not completely positive dynamics arise in physically realizable situations where the initial
state is separable but not a product. Let S and E both be qubits in a combined initial state,

ρSE = 1
4 (1 ⊗ 1 + ajσj ⊗ 1 − c23σ2 ⊗ σ3), (4)

where j = {1, 2, 3}, σj are the Pauli matrices, aj and c23 are real, and repeated indices are
summed over. The state ρSE is separable according to the Peres separability criterion [17].
The initial state of the system is

η = TrE [ρSE ] = (1 + ajσj )/2.

The state η depends on the parameters {aj }, which are the components of the Bloch vector
such that ||�a|| � 1. Furthermore, η will also be limited by the positivity condition of the total
state ρSE , which implies that �a must be compatible with the value of the parameter c23. All
possible values of {aj } that comply with this constraint are said to belong to the compatibility
domain [10].

Consider a unitary evolution of ρSE given by

U = cos(ωt)1 ⊗ 1 − i sin(ωt)σj ⊗ σj . (5)

The state of the system at time t is given by [18, 19],
1
2 [1 + cos2(2ωt)ajσj + c23 cos(2ωt) sin(2ωt)σ1].

The dynamical map B that describes the open evolution of the system qubit S is an affine
transformation [20] that squeezes the Bloch sphere of the qubit into a sphere of radius cos2(2ωt)

and shifts its center by c23 cos(2ωt) sin(2ωt) in the σ1 direction. By writing B in the form
equation (2), we obtain

B = 1

2

⎛
⎜⎜⎝

1 + C2 0 c23CS 2C2

0 1 − C2 0 c23CS

c23CS 0 1 − C2 0
2C2 c23CS 0 1 + C2

⎞
⎟⎟⎠ , (6)

where C ≡ cos(2ωt) and S ≡ sin(2ωt). The eigenvalues of B are

λ1,2 = 1
2 [1 − cos2(2ωt) ± c23 cos(2ωt) sin(2ωt)],

λ3,4 = 1
2

[
1 + cos2(2ωt) ± cos(2ωt)

√
4 cos2(2ωt) + c2

23 sin2(2ωt)
]
.

Note that λ3 and λ4 are always positive. For λ1 and λ2 to be positive we need sin2(2ωt) �
±c23 cos(2ωt) sin(2ωt). We can choose c23 such that this condition will be violated for some
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values of ωt making the map B not completely positive and it cannot be written in the form
given in equation (3). This example shows that even separable states can lead to not completely
positive maps. A similar example has been worked out in [13]. The map B has a physical
interpretation as long as it is applied to initial states η that are compatible with the total state
ρSE [11]. However, the positivity domain can depend on the particular evolution. In this
example, if we take ω = 0 such that the evolution is trivial, the eigenvalues of the map are
always positive even though there were initial correlations.

In general, do all correlations lead to not completely positive maps? Is there a way
of characterizing these correlations that let us easily see if a given initial state will lead to
completely positive dynamics under any unitary?

3. Classical correlations and quantum discord

The traditional division of bipartite density matrices ρXY into separable and entangled is often
taken to be synonymous with classical correlations and quantum correlations respectively
[21]. Ollivier and Zurek [1] and independently Henderson and Vedral [22] have proposed
a different definition for classical and quantum correlations in density matrices based on
information theoretic considerations. Suggestions for characterizing the correlations along
similar lines were also made by Bennett et al in [23, 24].

Correlations in classical information theory between random variables X and Y that
describe a probability distribution can be measured by the mutual information

J(Y : X) = H(Y) − H(Y|X),

where H is Shannon entropy, H(Y|X) is the conditional entropy of Y given X. As a consequence
of Bayes’ rule the conditional entropy can be written as H(Y|X) = H(Y, X) − H(X). This
leads to a different but equivalent formula for the classical mutual information

I(Y : X) = H(X) + H(Y) − H(X, Y).

These definitions have to be reexamined for quantum correlations. Since the information
that can be obtained from a quantum system depends on the choice of measurements that are
performed on it, the quantum version of the conditional entropy differs from the conditional
entropy for classical information. If X and Y are quantum systems with their state described by
the density matrix ρXY, then the conditional entropy of the system Y depends on the outcomes
of system X due to a set of measurements made on it. These measurement can be written in
terms of a particular set of one-dimensional orthogonal projectors

{
	X

j

}
acting on the space

of X. Hence to compute J(Y : X), we change the definition of H(Y|X) to

H(Y|X) = min
{	X

j }
H

(
Y
∣∣{	X

j

})
,

where

H
(
Y
∣∣{	X

j

}) =
∑

j

pj H(ρY|	X
j
),

with pj = TrX,Y	X
j ρ

XY, ρY|	Y
j

= 	X
j ρ

XY	X
j /pj , and the Shannon entropy is replaced by the

von Neumann entropy. The difference between I and J is called quantum discord and it is
taken as a measure of non-classical correlations in a quantum state [1].

A quantum state with only classical correlations satisfies the condition ρXY =∑
j 	X

j ρ
XY	X

j . States of this form are a subset of the set of all separable states and the subset
includes all simply separable (tensor product) states. On the other hand, not all separable
states have only classical correlations implying that quantum correlations must be taken to
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Figure 1. Quantum states of bipartite systems can be divided into having classical and quantum
correlations. Separable states can have quantum correlations while simply separable states have
only classical correlations. Not all quantum correlations are equivalent to entanglement. Also
shown is the nature of the dynamical maps induced by any unitary evolution of the state of a
system and its environment when the initial state belongs to each class. Classically correlated
states are a sufficient condition for completely positive maps while there are examples, indicated
by the arrows, showing that states with quantum correlations can lead to not completely positive
maps.

mean more than just entanglement. The information theoretic characterization of quantum
states based on the nature of the correlations present is compared with the traditional division
into separable and entangled states in figure 1.

Since measurements can be used to initialize quantum states, classically correlated states
are of experimental interest. This is done by performing a complete set of (non-selective)
orthogonal projective measurements {	j } on the system. After the measurements, the initial
state of the system and its environment are not uncorrelated, having the form

ρSE =
∑

j

	jρ
SE	j =

∑
j

pj	j ⊗ τj , (7)

where τj are density matrices for E and {	j } are a complete set of orthogonal projectors on
S, pj � 0 and

∑
j pj = 1. Sending a beam of photons through a polarizer or an electron

beam through a Stern–Gerlach apparatus are examples of this type of preparations. Thus,
classically correlated states appear often as the initial state for many quantum processes.

4. Classically correlated states lead to completely positive maps

We now reach the main result of this paper.

Theorem. Initially classically correlated state of the form ρSE = ∑
j pj	j ⊗ τj always lead

to completely positive dynamics.

Proof. We start from the classically correlated state from equation (7) for the system and its
environment. The initial state of the system is η = ∑

j pj	j . From equation (1) we have

η′
rs = [B]rr ′;ss ′ηr ′s ′ =TrE

{
[U ]ra;r ′a′

( ∑
j

pj [	j ]r ′s ′ [τj ]a′b′

)
[U ]∗sb;s ′b′

}
.

Taking the trace with respect to the environment by contracting indices a and b, we get

η′
rs =

∑
j

pj

[
Dkl

j

]
rr ′ [	j ]r ′s

[
Dkl

j

]∗
ss ′ ,
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where
[
Dkl

j

]
rr ′ ≡ [U ]rl;r ′a′ [

√
τj ]a′k . We have used the fact that {τj } are positive to take their

square root. After combining indices k and l into a single index α, we obtain

η′ =
∑
j,α

pjD
(α)
j 	jD

(α)
j

†
.

Expanding D
(α)
j as

∑
m D(α)

m δjm and using 	2
j = 	j ,

η′ =
∑
j,α

pj

(∑
m

D(α)
m δjm	j

)
	j

(∑
n

	jδjnD
(α)
n

†
)

.

Now we can use the orthogonality of projectors, 	m	j = δmj	j to drop the dependence of
D

(α)
j on index j and write

η′ =
∑
j,α

pj

(∑
m

D(α)
m 	m

)
	j	j	j

(∑
n

D(α)
n 	n

)†

.

We can redefine C(α) ≡ ∑
m D(α)

m 	m to obtain

η′ =
∑

α

C(α)

⎛
⎝∑

j

pj	j

⎞
⎠ C(α)† =

∑
α

C(α)ηC(α)†,

which is identical to equation (3) showing that it is a completely positive map. This completes
the proof. �

Remark. The map B comes from the contraction of the unitary evolution of the combined
state. Note that by specifying the initial state ρSE in equation (7) we have restricted ourselves
to the subset of all possible initial system states that is spanned by the projectors {	j }. We have
shown that the reduced dynamics on these states coming from arbitrary unitary transformations
on the extended, classically correlated, state is completely positive. Once the superoperator
describing this dynamics has been identified, its action can be extended to all states of the
system and the complete positivity of the map guarantees that it will transform physical states
to states. For all the states inside the subset spanned by {	j } we have the additional benefit
of seeing how the map could arise in a real physical systems. For states outside this subset we
do not have the advantage of an obvious mechanism that would explain the action of the map,
but all the same the map takes density matrices to density matrices. Our result shows that
any reduced unitary evolution of an open system that is initially classically correlated will be
completely positive3.

The evolution of an open system that has initial quantum correlations with the environment
might lead to not completely positive maps as shown in figure 1. We propose that if a not
completely positive map is found in an experiment, this should be considered as a signature
that the system had quantum correlations with the environment 4.

3 This result is different from Tong et al [25]. They show that a particular initial state can be connected to a particular
final state by matrices that have a form similar to equation (3). However, since matrices depend both on the initial
and final state, their result has to be interpreted as a point to point connection rather than a map.
4 Our definition of quantum correlations is different from those considered in previous studies by other authors
[13, 14].
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5. Example of completely positive map from classical correlations

We can compute an example of completely positive maps coming from a classically correlated
state by preparing the state given by equation (4) with a set of projective measurements {	j }
along the σ2 direction on the system space. This gives the initial state

∑
j 	jρ

SE	j =
1
4 (1 ⊗ 1 + a2σ2 ⊗ 1 − c23σ2 ⊗ σ3), which is only classically correlated. By evolving this state
using the unitaries given by equation (5), the following dynamical map is obtained:

B = 1

2

⎛
⎜⎜⎝

1 0 c23CS C2

0 1 −C2 c23CS

c23CS −C2 1 0
C2 c23CS 0 1

⎞
⎟⎟⎠ , (8)

where C ≡ cos(2ωt) and S ≡ sin(2ωt). Its eigenvalues are

λ1,2 = 1
2 [1 +

√
cos4(2ωt) + (c23 cos(2ωt) sin(2ωt))2],

λ3,4 = 1
2 [1 −

√
cos4(2ωt) + (c23 cos(2ωt) sin(2ωt))2],

which are always positive as expected.

6. Identifying correlations using quantum process tomography

It is often assumed that quantum process tomography corresponds to the experimental
reconstruction of dynamical maps [6]. A number of known initial states, sufficient to span the
space of density matrices of the system, are allowed to evolve as a result of an unknown process.
We look at a quantum process tomography experiment on a solid-state qubit performed by
Howard et al [26, 27] in the light of the results presented above. In this experiment, the system
of interest is a qubit formed in a nitrogen vacancy defect in a diamond lattice. The qubit was
initialized to the state η0 with p0 = Tr [|φ〉〈φ|η0] = 0.7. The state is not pure; it cannot be
ruled out that the system could be correlated to the environment. The map corresponding to
the decoherence process was found to have negative eigenvalues. The not completely positive
map found in this experiment could be interpreted as an indication that the initial state of the
system is not just classically correlated with the environment. Given that the qubit is in a
large crystal lattice, it is perhaps not very surprising that it had quantum correlations with its
surroundings. A detailed study of the connection of the evolution of open quantum systems
and quantum process tomography can be found in [28].

7. Conclusions

In conclusion, we have studied the effect of initial correlations with the environment on the
complete positivity of dynamical maps that describe the open-systems evolution. We proved
that classical correlations of the state of the system and its environment, as indicated by zero
discord, are a sufficient condition the maps induced by any unitary evolution of the combined
state to be completely positive. This result is more general than the previously known result
for simply separable initial states, and it is important toward clarifying the boundary between
completely positive and not completely positive maps.
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